COP 4600 — Summer 2013

Introduction To Operating Systems

Chapter 3 — Process Description And Control

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4600/sum2013

Department of Electrical Engineering and Computer Science
Computer Science Division
University of Central Florida

COP 4600: Intro To OS (Processes) Page 1 © Dr. Mark Llewellyn

Scheduling and Resource Management

Failrness

— Give equal and fair access to resources

Differential responsiveness

— Discriminate among different classes of jobs

Efficiency

— Maximize throughput, minimize response time, and
accommodate as many uses as possible

#
COP 4600: Intro To OS (Processes) Page 2 © Dr. Mark Llewellyn @j

Key Elements of an Operating System

Operating System

Service
Call
Handler (code)

Service Call
from Process

Long- Short- L'O
Term Term Queunes
Quene Quene

Interrupt
from Process Interrupt

Interrupt _ | Handler (code)

from L/Cy

Short-Term
Scheduler
(code)

v

Pass Control
to Process

Elements of an Operating System for Multiprogramming

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

System Structure

Over the years as more and more features have been added to the OS, and the
underlying hardware has become more capable and versatile, the size and
complexity of operating systems has grown.

IBM’s OS/360 (1964) contained just over 10 machine instructions. By the mid-
1970s the Multics OS contained more than 20x10° machine instructions.
Windows 2000 contains more than 32x10° lines of code. Windows XP has more
than 40x10° lines of code. The Linux Fedora 9 kernel contains about 7x10° lines
of code with the entire distribution just over 204x10° lines of code.

Modular programming alone is not sufficient to manage the development of such
large systems of code. There has been an increasing use of hierarchical layers
and information abstraction in the design of modern OS.

The hierarchical approach views the OS as a series of levels where each level
performs a related subset of functions

Each level relies on the next lower level to perform more primitive functions.
This decomposes a problem into a number of more manageable subproblems

’

COP 4600: Intro To OS (Processes) Page 4 © Dr. Mark Llewellyn g").

System Structure

 In general, lower layers deal with a far shorter time
scale.

« Some parts of the OS must interact directly with the
computer hardware, where events can have a time
scale as brief as a few billionths of a second.

« At the other end of the spectrum, parts of the OS
communicate with the user, who Issues commands at
a much more leisurely pace, perhaps one every few
seconds.

’

COP 4600: Intro To OS (Processes) Page 5 © Dr. Mark Llewellyn g").

External Objects

Processor

Hardware

Level Name Objects Example Operations

5 13 Shell User programming environment | Statements in shell language

12 User processes User processes Quit, kill, suspend, resume, ...

11 Directories Directories Create, destroy, attach, search, ...

10 Devices External devices Open, close, read, write, ...

9 File system Files Create, destroy, open, close, read, ...
L 8 Communications Pipes Create, destroy, open, write, ...

7 Virtual memory Segments, pages Read, write, fetch, ...

6 Local secondary store Blocks, device channels Read, write, allocate, free, ...

5 Primitive processes Semaphores, ready list Suspend, resume, wait, signal, ...
- 4 Interrupts Interrupt handlers Invoke, mask, unmask, retry, ...

3 Procedures Call stack, display Mark, stack, call, return, ...

2 Instruction set E::)a!;l:;rtrign SRS, T Load, store, add, subtract, branch, ...

1 Electronic circuits Registers, gates, buses, etc. Clear, transfer, activate, complement,

,

COP 4600: Intro To OS (Processes)

Page 6

© Dr. Mark Llewellyn g')l

Process Hardware Levels

e Levell
— Electronic circuits

— ODbjects are registers, memory cells, and logic
gates

— Operations are clearing a register or reading a
memory location

* Level 2
— Processor’s instruction set
— Operations such as add, subtract, load, and store

COP 4600: Intro To OS (Processes) Page 7 © Dr. Mark Llewellyn

Process Hardware Levels

e Level 3

— Adds the concept of a procedure or subroutine,
plus call/return operations

e Level4

— Interrupts

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Concepts with Multiprogramming

« Level5
— Process as a program in execution
— Suspend and resume processes
« Level 6
— Secondary storage devices
— Transfer of blocks of data
« Level 7

— Creates logical address space for processes

— QOrganizes virtual address space into blocks

COP 4600: Intro To OS (Processes) Page 9 © Dr. Mark Llewellyn

Deal with External Objects
* Level 8

— Communication of information and messages
between processes

e Level 9
— Supports long-term storage of named files

e Level 10

— Provides access to external devices using
standardized interfaces

COP 4600: Intro To OS (Processes) Page 10 © Dr. Mark Llewellyn

Deal with External Objects

e Level 11

— Responsible for

e Level 12

maintaining

the association
between the external and internal identifiers

— Provides full-featured facility for the support of

ProCesses

e Level 13

— Provides an interface to the operating system for

the user

COP 4600: Intro To OS (Processes)

Page 11

© Dr. Mark Llewellyn

7
()
S,

Modern Operating Systems

 Monolithic kernel

— Most of what is viewed as OS functionality is provided in a large
kernel

e Microkernel architecture

— Assigns only a few essential functions to the kernel
« Address spaces, interprocess communication (IPC), and basic scheduling

— Other OS functionality (services) are provided by processes,
sometimes called servers, that run in user mode and are treated like
any other application by the microkernel.

— Microkernel approach simplifies implementation, provides
flexibility, and is well suited to a distributed environment. In
essence, a microkernel interacts with local and remote server
processes in the same way, facilitating construction of distributed
systems.

’

COP 4600: Intro To OS (Processes) Page 12 © Dr. Mark Llewellyn g");

Modern Operating Systems

Multithreading
— A process is divided into threads that can run concurrently

« A thread iIs a dispatchable unit of work. Includes a processor
context (which includes the program counter and stack pointer) and
Its own data area for a stack (to enable subroutine branching).

— Executes sequentially and is interruptible so that the processor
can run another thread.

« A process is a collection of one or more threads and associated
system resources (such as memory containing both code and data,
open files, and devices). This corresponds closely to the concept of
a program in execution.

#
COP 4600: Intro To OS (Processes) Page 13 © Dr. Mark Llewellyn @j

Modern Operating Systems

Until fairly recently, virtually all single-user personal
computers and workstations contained a single general-
purpose microprocessor. As demands for performance has
Increased and the cost of microprocessors has continued to
drop, vendors have introduced computers with multiple
MICroprocessors.

To achieve greater efficiency and reliability one technique Is to
employ symmetric multiprocessing (SMP), which describes
both a hardware architecture and a OS behavior.

In SMP

— There are multiple processors

— These processors share same main memory and 1/O facilities,
interconnected by a communication bus or other internal connection
scheme

— All processors can perform the same functions
(hence the term symmetric)

e
COP 4600: Intro To OS (Processes) Page 14 © Dr. Mark Llewellyn gjj

Multiprogramming and Multiprocessing

Time

Process 1 T, A TS

Process 2 W WA IIrrrrrary |

Process 3 T i rr st e et M

(a) Interleaving (multiprogramming, one processor)

Process 1 T, AT,

Process 2 T

Process 3 7777777 R

(b} Imterleaving and overlapping (multiprocessing; two processors)

Blocked HEEE Running

Multiprogramming and Multiprocessing

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Modern Operating Systems

 Distributed operating systems

— Provides the illusion of a single main memory
space and single secondary memory space

 Object-oriented design

— Used for adding modular extensions to a small
kernel

— Enables programmers to customize an operating
system without disrupting system integrity

COP 4600: Intro To OS (Processes) Page 16 © Dr. Mark Llewellyn

Threads and SMP

Operating system routines can run on any available
processor

Different routines can execute simultaneously on
different processors

Multiple threads of execution within a single process
may execute on different processors simultaneously

Server processes may use multiple threads

Share data and resources between process

7
COP 4600: Intro To OS (Processes) Page 17 © Dr. Mark Llewellyn gjj

Requirements of an Operating System

 Interleave the execution of multiple processes to
maximize processor utilization while providing
reasonable response time

 Allocate resources to processes

« Support Inter-process communication and user
creation of processes

#
COP 4600: Intro To OS (Processes) Page 18 © Dr. Mark Llewellyn @j

Process

A program in execution
An Instance of a program running on a computer

The entity that can be assigned to and executed on a
processor

A unit of activity characterized by the execution of a
sequence of instructions, a current state, and an
assoclated set of system instructions.

Historically referred to as a job.

#
COP 4600: Intro To OS (Processes) Page 19 © Dr. Mark Llewellyn @j

Process Elements

Identifier — a unique process id

State — running, suspended, etc. (more later)

Priority — priority relative to other processes

Program counter — address of next instruction to be executed.

Memory pointers — pointers to program code and data plus any
shared with other processes.

Context data — data present in registers while the process is
executing

/O status information — all outstanding 1/0 request, 1/0
devices assigned to this process

Accounting information — processor time used, clock time
used, account numbers, etc.

#
COP 4600: Intro To OS (Processes) Page 20 © Dr. Mark Llewellyn @j

Process Control Block
(PCB) State

Priority
 Contains the process elements e

Memory pointers

 Created and manage by the

) Context data
operating system 1/0 status

information

« Allows support for multiple o

p rOcesseS information

Simplified Process Control Block

#
COP 4600: Intro To OS (Processes) Page 21 © Dr. Mark Llewellyn @j

Trace of Process

 The behavior of an individual process can be
characterized by listing the sequence of instructions
that execute for that process. Such a listing Is
referred to as a trace.

« The dispatcher switches the processor from one
process to another.

» We can characterize the behavior of the processor by
showing how the traces of the various processes are
Interleaved.

7
COP 4600: Intro To OS (Processes) Page 22 © Dr. Mark Llewellyn gjj

Address Vain Memory Program Counter

0 3000
100 | |

Dispatcher

Process A

Example Execution

Process C

Snapshot of Example Execution
at Instruction Cycle 13

COP 4600: Intro To OS (Processes) Page 23 © Dr. Mark Llewellyn

Trace of Processes

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

(a) Trace of Process A

8000
8001
8002
8003

(b) Trace of Process B

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

(c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

COP 4600: Intro To OS (Processes)

© Dr. Mark Llewellyn

Instruction Instruction Instruction Instruction
Cycle Address Cycle Address

v — v

1 5000 27 12004

2 5001 28 12005

3 5002 e Time out

4 5003 20 100

5 5004 30 1M

6 5005 31 102

.................. Time out 32 103

7 100 33 104

8 101 34 105

g 102 35 5006

10 103 36 5007

11 104 37 5008

12 105 38 5009

13 8000 30 5010

14 8001 40 5011

15 goQ Time out

16 8003 41 100

--------------- 1/0 request 42 101

17 100 43 102

18 101 44 103

19 102 45 104

20 103 46 105

21 104 47 12006

22 105 48 12007

23 12000 49 12008

24 12001 50 12008

25 12002 51 12010

26 12003 52 12011
------------------ Time out

100 = Starting address of dispatcher program

shaded areas mdicate execution of dispatcher process;
first and third columns count mstruction cycles;
second and fourth columns show address of instruction betng executed

COP 4600: Intro To OS (Processes)

© Dr. Mark Llewellyn

Two-State Process Model

* Process may be in one of two states
— Running
— Not-running

Dyispatch

/—\

Not
Running

‘\/

Pause

Running

State transition diagram

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

All Not-Running Processes in a Queue

] Dispatch
|

-

Pause

Queuning diagram

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Reasons Process Creation Occurs

New batch job

Interactive logon

Created by OS to provide a service

Spawned by existing process

The operating system is provided with a batch job control
stream_ usually on tape or disk. When the operating svstem
is prepared to take on new work, it will read the next
sequence of job control commands.

A user at a terminal logs on to the svstem.
The operating system can create a process to perform a
function on behalf of a user program_ without the user

having to wait (e.g_, a process to control printing).

For purposes of modularity or to exploit parallelism, a user
program can dictate the creation of a number of processes.

COP 4600: Intro To OS (Processes)

[
Page 28 © Dr. Mark Llewellyn @j

Reasons For Process Termination

Normal completion The process executes an OS5 service call to indicate that it has
completed running.

Time limit exceeded The process has run longer than the specified total time limit.
There are a number of possibilities for the tvpe of time that is
measured. These include total elapsed time ("wall clock time"),
amount of time spent executing, and, in the case of an interactive
process, the amount of time since the user last provided anvy input.

Memorv unavailable The process requires more memory than the system can provide.

Eounds violation The process tries to access a memory location that it is not allowed
to access.

Protection error The process attempts to use a resource such as a file that it is not

allowed to use, or it tries to use it in an improper fashion, such as
writing to a read-onlyv file.

Arithmetic error The process tries a prohibited computation, such as division by
zero, or tries to store numbers larger than the hardware can
accommodate.

’

COP 4600: Intro To OS (Processes) Page 29 © Dr. Mark Llewellyn g’)n

Reasons For Process Termination

Time overrun

'O failure

Inwalid instruction

Privileged instruction

Data misuse

Owperator or OS intervention

Parent termination

Parent request

The process has waited longer than a specified maximum for a
certain event to occur.

An error occurs during input or output, such as inability to find a
file, failure to read or write after a specified maximum number of
tries (when, for example, a defective area is encountered on a

tape), or invalid operation (such as reading from the line printer).

The process attempts to execute a nonexistent instruction (often a
result of branching into a data area and attempting to execute the

data).

The process attempts to use an instruction reserved for the
operating svstem.

A piece of data is of the wrong tvpe or is not initialized.

For some reason, the operator or the operating svstem has
terminated the process (for example, if a deadlock exists).

When a parent terminates, the operating svstem may automatically
terminate all of the offspring of that parent.

A parent process typically has the authority to terminate any of its offspring.

COP 4600: Intro To OS (Processes) Page 30 © Dr. Mark Llewellyn g");

Processes
 Not-running
— ready to execute
 Blocked
— waiting for 1/O

 Dispatcher cannot just select the process that has been
In the queue the longest because it may be blocked

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Five-State Process Model

Dispatch
—_—

Running —>

Timeout

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Process States

Process A

FESFFFFFFFIFFFFFFFEFFFFFFFFFEEFFF P

e

Process B o e e :‘:‘:‘:’:“':":‘:‘:’:‘:‘:‘:‘:’:‘:‘:‘:':':':‘:':‘:':‘:‘:‘:‘:':-
i i e il e e i

Process C

Dispatcher

= Running

Process states corresponding to trace on page 25

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Using Two Queues

Ready Queue Release
Dispatch -
=

Timeout

Blocked Queue

Event Wait

—a

{a) Single blocked queue

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Multiple Blocked Queues

Ready Queue

Admit Dyispatch
1 - Processor

Timeout

Event 1 Queue o
Event 1 Event 1 Wait

Occurs

Event 2 Event 2 Wait
Oceurs

¥
¥
¥

Event s Queue
Event Event n Wait

Ocours

(b} Multiple blocked queues

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Suspended Processes

Processor Is faster than 1/0O so all processes could be
waiting for 1/O

Swap these processes to disk to free up more memory

Blocked state becomes suspend state when swapped
to disk

Two new states
— Blocked/Suspend
— Ready/Suspend

#
COP 4600: Intro To OS (Processes) Page 36 © Dr. Mark Llewellyn @j

One Suspend State

Suspend
Suspend <e——— Blocked

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Two Suspend States

o A Activate Dispalclr*‘ ~, Release
Suspend -—g—————m Ready il Running ——® Exit
A Suspend Timeout

Activate
Blocked/ =————————f-

suspend -

Suspend

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Reasons for Process Suspension

Swapping The operating svstem needs to release sufficient main
memory to bring in a process that is ready to execute.

Other OS reason The operating system may suspend a background or utility
process or a process that is suspected of causing a problem.

Interactive user request A user mav wish to suspend execution of a program for
purposes of debugging or in connection with the use of a
resource.

Timing A process may be executed periodically {e.g_, an

accounting or system monitoring process) and may be
suspended while waiting for the next time interval

Parent process request A parent process may wish to suspend execution of a
descendent to examine or modify the suspended process, or
to coordinate the activity of various descendents.

#
COP 4600: Intro To OS (Processes) Page 39 © Dr. Mark Llewellyn @j

Processes and Resources

Yirtual

Computer
Resources

Processor

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Operating System Control Structures

e Information about the current status of each
process and resource

 Tables are constructed for each entity the
operating system manages

COP 4600: Intro To OS (Processes) Page 41 © Dr. Mark Llewellyn

Memory Tables

Allocation of main memory to processes

Allocation of secondary memory to processes

 Protection attributes for access to shared memory
regions

 [nformation needed to manage virtual memory

COP 4600: Intro To OS (Processes) Page 42 © Dr. Mark Llewellyn

/O Tables

 |/O device Is available or assigned

» Status of 1/O operation

 Location in main memory being used as the source or

destination of the 1/O transfer

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

File Tables

Existence of files

Location on secondary memory

Current Status

Attributes

Sometimes this information Is maintained by a
file management system

COP 4600: Intro To OS (Processes)

Page 44

© Dr. Mark Llewellyn

7
()
S,

Process Table

» Where process Is located

o Attributes in the process control block
— Program
— Data
— Stack

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area, and
programs that may be modified

User Program
The program to be executed.

Svstem Stack
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A

stack 15 used to store parameters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the operating system to control the process

COP 4600: Intro To OS (Processes) Page 46 © Dr. Mark Llewellyn g");

Memory Tables

Memory

Devices

Files

Processes File Tables

Primary Process Table

- Process 1

Process 2

General structure of Process 3
OS Tables

¥
¥
¥

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Process Control Block

e Process identification

— ldentifiers

« Numeric identifiers that may be stored with the process
control block include
— ldentifier of this process

— ldentifier of the process that created this process (parent
process)

— User identifier

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Process Control Block

e Processor State Information

— User-Visible Registers

* A user-visible register is one that may be referenced by
means of the machine language that the processor
executes while in user mode. Typically, there are from 8
to 32 of these registers, although some RISC
Implementations have over 100.

#
COP 4600: Intro To OS (Processes) Page 49 © Dr. Mark Llewellyn @j

Process Control Block

* Processor State Information

— Control and Status Registers

These are a variety of processor registers that are employed to
control the operation of the processor. These include

Program counter: Contains the address of the next instruction to be
fetched

Condition codes: Result of the most recent arithmetic or logical
operation (e.g., sign, zero, carry, equal, overflow)

Status Information: Includes interrupt enabled/disabled flags,
execution mode

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Process Control Block

e Processor State Information

— Stack Pointers

« Each process has one or more last-in-first-out (LIFO)
system stacks associated with it. A stack is used to store
parameters and calling addresses for procedure and
system calls. The stack pointer points to the top of the
stack.

#
COP 4600: Intro To OS (Processes) Page 51 © Dr. Mark Llewellyn @j

Process Control Block

e Process Control Information

— Scheduling and State Information

This is information that is needed by the operating system to perform its
scheduling function. Typical items of information:

» Process state: defines the readiness of the process to be scheduled for
execution (e.g., running, ready, waiting, halted).

 Priority: One or more fields may be used to describe the scheduling
priority of the process. In some systems, several values are required (e.g.,
default, current, highest-allowable)

 Scheduling-related information: This will depend on the scheduling
algorithm used. Examples are the amount of time that the process has
been waiting and the amount of time that the process executed the last
time it was running.

« Event: Identity of event the process is awaiting before it can be
resumed

#
COP 4600: Intro To OS (Processes) Page 52 © Dr. Mark Llewellyn @j

Process Control Block

e Process Control Information

— Data Structuring

« A process may be linked to other process in a queue,
ring, or some other structure. For example, all processes
In a waiting state for a particular priority level may be
linked In a queue. A process may exhibit a parent-child
(creator-created) relationship with another process. The
process control block may contain pointers to other
processes to support these structures.

7
COP 4600: Intro To OS (Processes) Page 53 © Dr. Mark Llewellyn gjj

Process Control Block

e Process Control Information

— Interprocess Communication

« Various flags, signals, and messages may be associated with
communication between two independent processes. Some or all of
this information may be maintained in the process control block.

— Process Privileges

» Processes are granted privileges in terms of the memory that may
be accessed and the types of instructions that may be executed. In
addition, privileges may apply to the use of system utilities and
services.

#
COP 4600: Intro To OS (Processes) Page 54 © Dr. Mark Llewellyn @j

Process Control Block

e Process Control Information

— Memory Management

» This section may include pointers to segment and/or
page tables that describe the virtual memory assigned to
this process.

— Resource Ownership and Utilization

» Resources controlled by the process may be indicated,
such as opened files. A history of utilization of the
processor or other resources may also be included; this
Information may be needed by the scheduler.

’

COP 4600: Intro To OS (Processes) Page 55 © Dr. Mark Llewellyn g");

Processor State Information

 Contents of processor registers
— User-visible registers
— Control and status registers

— Stack pointers

* Program status word (PSW)

— contains status information

— Example: the EFLAGS register on Pentium
machines

COP 4600: Intro To OS (Processes) Page 56 © Dr. Mark Llewellyn

Pentium Il EFLAGS Register

Identification flag DF = Direction flag
Virtual interrupt pending IF = Interrupt enable flag
Virtual interrupt flag TF = Trap flag
Alignment check SF = Sign flag

Virtual 8086 mode ZF = Zeroflag

Resume flag AF = Auxiliary carry flag
Nested task flag PF = Parity flag

/O privilege level CF = Carry flag
Overflow flag

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Process Creation

Assign a unique process identifier
Allocate space for the process
Initialize process control block

Set up appropriate linkages

— Ex: add new process to linked list used for scheduling queue

Create or expand other data structures

— EX: maintain an accounting file

#
COP 4600: Intro To OS (Processes) Page 58 © Dr. Mark Llewellyn @j

When to Switch a Process

Clock interrupt
— process has executed for the maximum allowable time slice

1/0O interrupt
Memory fault

— memory address is in virtual memory so it must be brought into main
memory

Trap

— error or exception occurred
— may cause process to be moved to Exit state

Supervisor call
— such as file open

COP 4600: Intro To OS (Processes) © Dr. Mark Llewellyn

Change of Process State

Save context of processor including program counter and other
registers

Update the process control block of the process that Is
currently in the Running state

Move process control block to appropriate queue — ready;
blocked; ready/suspend

Select another process for execution
Update the process control block of the process selected
Update memory-management data structures

Restore context of the selected process

#
COP 4600: Intro To OS (Processes) Page 60 © Dr. Mark Llewellyn @j

CPU Switch From Process to Process

process P, operating system

interrupt or system call

executing l / l

save state into PCBD

reload state from PCB1

process P,

interrupt or system call

executing

;

save state into PCB1

reload state from PCB0

\

COP 4600: Intro To OS (Processes) Page 61

© Dr. Mark Llewellyn

